Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Mol Genet Metab ; 121(2): 111-118, 2017 06.
Article En | MEDLINE | ID: mdl-28396157

BACKGROUND: 3-Hydroxy-3-Methylglutaryl-Coenzyme A (HMG-CoA) lyase deficiency is a rare inborn error of leucine metabolism and ketogenesis. Despite recurrent hypoglycemia and metabolic decompensations, most patients have a good clinical and neurological outcome contrasting with abnormal brain magnetic resonance imaging (MRI) signals and consistent abnormal brain proton magnetic resonance spectroscopy (1H-MRS) metabolite peaks. Identifying these metabolites could provide surrogate markers of the disease and improve understanding of MRI-clinical discrepancy and follow-up of affected patients. METHODS: Urine samples, brain MRI and 1H-MRS in 5 patients with HMG-CoA lyase deficiency (4 boys and 1 girl aged from 25days to 10years) were, for each patient, obtained on the same day. Brain and urine spectroscopy were performed at the same pH by studying urine at pH 7.4. Due to pH-induced modifications in chemical shifts and because reference 1H NMR spectra are obtained at pH 2.5, spectroscopy of normal urine added with the suspected metabolite was further performed at this pH to validate the correct identification of compounds. RESULTS: Mild to extended abnormal white matter MRI signals were observed in all cases. Brain spectroscopy abnormal peaks at 0.8-1.1ppm, 1.2-1.4ppm and 2.4ppm were also detected by urine spectroscopy at pH 7.4. Taking into account pH-induced changes in chemical shifts, brain abnormal peaks in patients were formally identified to be those of 3-hydroxyisovaleric, 3-methylglutaconic, 3-methylglutaric and 3-hydroxy-3-methylglutaric acids. CONCLUSION: 3-Methylglutaric, 3-hydroxyisovaleric and 3-hydroxy-3-methylglutaric acids identified on urine 1H-NMR spectra of 5 patients with HMG-CoA lyase deficiency are responsible for the cerebral spectroscopy signature seen in these patients, validating their local involvement in brain and putative contribution to brain neuropathology.


Acetyl-CoA C-Acetyltransferase/deficiency , Amino Acid Metabolism, Inborn Errors/metabolism , Amino Acid Metabolism, Inborn Errors/urine , Brain Chemistry , Brain/diagnostic imaging , Brain/metabolism , Meglutol/urine , Metabolomics/methods , Acetyl-CoA C-Acetyltransferase/chemistry , Acetyl-CoA C-Acetyltransferase/metabolism , Acetyl-CoA C-Acetyltransferase/urine , Amino Acid Metabolism, Inborn Errors/diagnostic imaging , Cerebellum/metabolism , Child , Child, Preschool , Female , Humans , Hydrogen-Ion Concentration , Infant , Infant, Newborn , Magnetic Resonance Imaging , Male , Meglutol/analogs & derivatives , Meglutol/metabolism , Proton Magnetic Resonance Spectroscopy , Urine/chemistry , Valerates/metabolism , White Matter/metabolism
2.
Eur J Med Chem ; 92: 807-17, 2015 Mar 06.
Article En | MEDLINE | ID: mdl-25637882

5-HT6 Receptors are relatively recently discovered receptors that interact with cholinergic, glutamatergic, GABAergic and dopaminergic transmission systems. These receptors have been implicated in the CNS system as therapeutic targets in applications such as psychosis, reduction of body weight or Alzheimer's disease. As part of our efforts to develop 5-HT6 antagonists, we explored the benzothiazolone scaffold substituted in position 3 or 6 respectively with ethylamino chains and an aromatic ring connected through a sulfonyl linker. Final compounds were evaluated in radioligand binding assays for their ability to interact with 5-HT6 receptors. Their potential cytotoxic effects were determined on the human neuroblastoma cell line SY5Y. They showed very low cytotoxicity, and one of them has submicromolar affinity for 5-HT6 receptors.


Benzothiazoles/chemistry , Benzothiazoles/pharmacology , Drug Design , Receptors, Serotonin/metabolism , Serotonin Antagonists/chemical synthesis , Serotonin Antagonists/pharmacology , Benzothiazoles/chemical synthesis , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , HEK293 Cells , Humans , Ligands , Molecular Structure , Serotonin Antagonists/chemistry , Structure-Activity Relationship , Tumor Cells, Cultured
...